

Max Marks: 100

Date: 00.00.2022

ABHIMANYU BATCH PHYSICS : REVISION TEST-2 (SET A) Topic: Wave Optics + Rotational Motion + Elasticity

1. A wavefront is

2.

3.

4.

5.

6.

(a)							
(a)	A surface image	gined paral	lel and coplanar wit	h light ray	/8		
(b)	A surface arou	nd a source	e such that each poi	nt of it is a	at a constant dista	nce from the	e source
(c)	A surface which	ch contains	the plane of oscilla	tions of el	ectric field of ligh	ıt	
(d)	A surface which	ch is create	d by medium partic	les oscilla	ting in same phase	e	
Whicl	h of the following	g statement	(s) is/are correct?				
I.	A point source	emitting v	vaves uniformly in a	all direction	ons.		
II.	In spherical w spheres	vave, the le	ocus of point whic	h have th	e same amplitud	e and vibra	tte in same phase are
III.	At a small dist	ance from	he source, a small j	portion of	sphere can be con	sidered as p	olane wave.
(a)	Only I	(b)	Both I and II	(c)	Only III	(d)	All of these
The ic	dea of secondary	wavelets fo	or the propagation o	f wave wa	as first given by		
(a)	Newton	(b)	Huygens	(c)	Maxwell	(d)	Fresnel
A sho	ortcoming of Huy	gens' mode	el could not				
(a)	Explaining the	absence of	the backware				
(4)							
(b)	Determine the	shape of th	e wavefront for a p	lane wave			
(b) (c)	Determine the Explain the po	shape of th	e wavefront for a p emitting waves unif	lane wave ormly in a	Ill directions		
(d) (c) (d)	Determine the Explain the po All of the above	shape of th int source o ve	e wavefront for a p emitting waves unif	lane wave ormly in a	Ill directions		
(d) (c) (d) Ray d	Determine the Explain the po All of the abov liverging from a p	shape of th int source of ye point source	e wavefront for a p emitting waves unif e from a wavefront	lane wave ormly in a that is	all directions		
(b) (c) (d) Ray d (a)	Determine the Explain the po All of the abov liverging from a p cylindrical	shape of th int source of re point source (b)	e wavefront for a p emitting waves unif e from a wavefront spherical	lane wave formly in a that is (c)	all directions	(d)	cubical
(d) (b) (c) (d) Ray d (a) Wave	Determine the Explain the po All of the abov liverging from a p cylindrical	shape of th int source of ye point source (b) of all poin	e wavefront for a p emitting waves unif e from a wavefront spherical t, where the particle	lane wave formly in a that is (c)	ill directions plane plane wit	(d) h the same	cubical

7.	Light w	vaves travel in vacu	es travel in vacuum along the y-axis. Which of the following may represent the wavefront?											
	(a)	y = constant			(b)	$\mathbf{x} = \mathbf{constant}$								
	(c)	z = constant			(d)	x + y + z = constant								
8.	A light	wave travels throug	gh a med	ium carrying energy	in three	dimensional space. E	nergy sp	pread is described by						
	(a)	Rays originating fr	rom the s	source										
	(b)	Beam of light orig	inating f	rom source consistin	g of a br	canch of rays								
	(c)	Wavefronts origination	ating fro	m source travelling i	n mediu	m with speed of light								
	(d)	Imagining light co	nsisting	of particles moving	through	medium with speed of	f light							
9.	Sound	wave in air cannot b	in air cannot be polarized because											
	(a)	their speed is smal	1		(b)	they require medium	n							
	(c)	these are longitudi	nal		(d)	their speed is tempe	rature de	ependent						
10.	In case	of linearly polarize	d light, t	he magnitude of the	electric	field vector								
	(a)	does not change w	ith time		(b)	varies periodically v	with time	2						
	(c)	increases and decre	eases lin	early with time	(d)	is parallel to the dire	ection of	propagation						
11.	Which	of the following sta	tement(s	a) is/are correct?										
	I.	A polaroid consist	s of long	chain molecules ali	gned in a	a particular direction.								
	II.	Electric vectors alo	ong the d	lirection of the align	ed molec	cule in a polaroid gets	absorbe	ed.						
	III.	An unpolarised lig	ht wave	is incident on polare	oid then i	t will get linearly pola	arized.							
	(a)	Only I	(b)	Both II and III	(c)	Only III	(d)	All of the above						
12.	Polaroi	ds are used in												
	(a)	photographic came	eras		(b)	3D movies cameras								

(c) Both (a) and (b) (d) Neither (a) nor (b)

13. Figure shows the process of

15.

16.

- 14. Which of the following statement(s) is/are correct with reference to the figure given below?
 - I. Dots and arrows indicate that both polarisations are present in the incident and refracted waves.
 - II. The reflected light is not linearly polarized.
 - III. Transmitted intensity will be zero when the axis of the analyser is in the plane of the figure i.e. the plane of incidence.

	Air Refle	cted — Refract	ed				
(a)	Only I	(b)	Only II	(c)	Both I and III	(d)	Both I and II
The I	Brewster angle for	the glass-	air interface is 54.	74°. If a ra	y of light going from	n air to g	lass strikes at an angle
of inc	vidence 45°, then th	ne angle o	f refraction is (Giv	en, tan 54.7	$74^{\circ} = \sqrt{2}$)		
(a)	60°	(b)	30°	(c)	25°	(d)	54.74°
Whic	h of the following	phenome	non is not commor	to sound a	and light waves?		
(a)	Interference	(b)	Diffraction	(c)	Polarisation	(d)	Reflection
			Snace for	Rough Wo	rk		

- 17. In case of linearly polarized light, the magnitude of the electric field vector
 - (a) does not change with time (b)
- (b) varies periodically with time
 - (c) increases and decreases linearly with time (d) is parallel to the direction of propagations
- 18. The moment of inertial of a circular disc of radius 2 m and mass 1 kg about an axis passing through the centre of mass but perpendicular to the plane of the disc is 2 kg-m². Its moment of inertia about an axis parallel to this axis but passing through the edge of the disc is (see the given figure).

- 19. The moment of inertia of a circular disc about one of its dimeters is I. What will be its moment of inertia about a tangent parallel to the diameter?
 - (a) 41 (b) 41 (c) $\frac{5l}{2}$ (d) 51

20. The moment of inertia of a sphere of mass M and radius R about an axis passing through its centre is $\frac{2}{5}$ MR². The radius of gyration of the sphere about a parallel axis to the above and tangent to the sphere is

(a) $\frac{7}{5}R$ (b) $\frac{3}{5}R$ (c) $\left(\sqrt{\frac{7}{5}}\right)R$ (d) $\left(\sqrt{\frac{3}{5}}\right)R$

21. Moment of inertia of ring about its diameter is I. Then, moment of inertial about an axis passing through centre perpendicular to its plane is

- 22. The ratio of the radii of gyration of a circular disc and a circular ring of the same radii about a tangential axis perpendicular to plane of disc or ring is
 - (a) 1:2 (b) $\sqrt{5}:\sqrt{6}$ (c) 2:3 (d) $\sqrt{3}:2$
- 23. The ratio of the radii of gyration of a circular disc to that of a circular ring, each of same mass and radius, around their respective axes is
 - (a) $\sqrt{3}:\sqrt{2}$ (b) $1:\sqrt{2}$ (c) $\sqrt{2}:1$ (d) $\sqrt{2}:\sqrt{3}$
- 24. From a circular disc of radius R and mass 9 M, a small disc of radius R/3 is removed from the disc (as shown in figure) the moment of inertial of the remaining disc about an axis perpendicular to the plane of the disc and passing through O is

- (a) 4 MR^2 (b) $\frac{40}{9} \text{MR}^2$ (c) 10 MR^2 (d) $\frac{37}{9} \text{MR}^2$
- 25. The moment of inertial of two equal masses each of mass m at separation L connected by a rod of mass M, about an axis passing through centre and perpendicular to length of rod is
 - (a) $\frac{(M+3m)L^2}{12}$ (b) $\frac{(M+6m)L^2}{12}$ (c) $\frac{ML^2}{4}$ (d) $\frac{ML^2}{12}$
- 26. What is the torque of the force $F = (2\hat{i} 3\hat{j} + 4\hat{k})N$ acting at the point $r = (3\hat{i} + 2\hat{j} + 3\hat{k})m$ about the origin?
 - (a) $-17\hat{i} + 6\hat{j} + 13\hat{k}$ (b) $-6\hat{i} + 6\hat{j} 12\hat{k}$ (c) $17\hat{i} 6\hat{j} 13\hat{k}$ (d) $6\hat{i} + 6\hat{j} + 12\hat{k}$
- 27. A thin rod of mass m and length 2l is made to rotate about an axis passing through its centre and perpendicular to it. If its angular velocity changes from 0 to ω in time t, the torque acting on it is

(a)
$$\frac{ml^2\omega}{12t}$$
 (b) $\frac{ml^2\omega}{3t}$ (c) $\frac{ml^2\omega}{t}$ (d) $\frac{4ml^2\omega}{3t}$

28.	The instantaneous angular position of a point on a rotating wheel is given by the equation $Q(t) = 2t^3 - 6t^2$									
	The to	que on the wheel be	ecomes z	zero at						
	(a)	t = 0.5 s	(b)	t = 0.25 s	(c)	t = 2 s	(d)	t = 1 s		
29.	If r der propor	notes the distance be tional to	etween t	he sun and the earth,	then the	angular momentum o	of the ea	rth around the sun is		
	(a)	r ^{3/2}	(b)	r	(c)	\sqrt{r}	(d)	r ²		
30.	A balle become	et dancer spins with es 0.7 I, the new rate	2.8 rps e of spin	with her arms out st	retched.	When the moment o	f inertia	about the same axis		
	(a)	3.2 rps	(b)	4.0 rps	(c)	4.8 rps	(d)	5.6 rps		
31.	If the e	arth suddenly chang	ges its ra	dius x times the prese	ent value	e, the new period of ro	otation w	ould be		
	(a)	6x ² h	(b)	$12x^{2}h$	(c)	$24x^{2}h$	(d)	$48x^{2}h$		
32.	A whe momer	el of mass 8 kg and nt of inertial of the v	l radius vheel ab	40 cm is rolling on a out its axis is 0.64 kg	a horizo m ⁻² . To	ntal road with angula tal kinetic energy of v	r velocit vheel is	sy of 15 rad s ^{-1} . The		
	(a)	288 J	(b)	216 J	(c)	72 J	(d)	144 J		
33.	A sphe distanc	ere and a hollow c	ylinder 1 If the an	roll without slipping gle of the plane down	down t 1 which	wo separate inclined the sphere rolls is 30°	planes ² , the ang	and travel the same gle of the other plane		
	(a)	60°	(b)	53°	(c)	37°	(d)	45°		
34.	A solid	cylinder rolls down	n an incl	ined plane of height 3	3 m and	reaches the bottom of	f plane w	vith angular velocity,		
	of $2\sqrt{2}$	$\overline{2}$ rad s ⁻¹ . The radius	of cylin	nder must be (Given, g	g = 10 m	$11s^{-2}$)				
	(a)	5 cm	(b)	0.5 cm	(c)	$\sqrt{10}$ cm	(d)	$\sqrt{5}$ m		

35. If a sphere rolling on an inclined plane with velocity v without slipping, the vertical height of the incline in terms of velocity will be

- 36. A cylinder is rolling down on an inclined plane of inclination 60°. What is its acceleration?
 - (a) g/3 (b) $g/\sqrt{3}$ (c) $\sqrt{\frac{2g}{3}}$ (d) None of these
- 37. The speed of a homogenous solid sphere after rolling down an inclined plane of vertical height h from rest without sliding is
 - (a) $\sqrt{\frac{10}{7} \text{gh}}$ (b) $\sqrt{\frac{4}{3} \text{gh}}$ (c) $\sqrt{\text{gh}}$ (d) $\sqrt{\frac{6}{5} \text{gh}}$
- 38. The following four wires of length L and radius r are made of the same material. Which of these will have the largest extension, when the same tension is applied?
 - (a) L = 100 cm, r = 0.2 mm (b) L = 200 cm, r = 0.4 mm
 - (c) L = 300 cm, r = 0.6 mm (d) L = 400 cm, r = 0.8 mm
- 39. A sphere of radius 3 cm is subjected to a pressure of 100 atm. Its volume decreases by 0.3 cc. What will be its bulk modulus?
 - (a) $4\pi \times 10^5$ atm (b) $4\pi \times 3 \times 10^3$ atm (c) $4\pi \times 10^6$ atm (d) $4\pi \times 10^8$ atm

40.	To break a wire of 1 m length, minimum 40 kg weights is required. Then, the wire of the same material of double										
	radius	and 6 m length will	require	breaking weight							
	(a)	80 kg-weight	(b)	240 kg-weight	(c)	200 kg-weight	(d)	160 kg-weight			
41.	When	a weight of 10 kg is	suspen	ded from a copper wi	re of len	gth 3 m and diameter	r 0.4 mm	h. Its length increases			
	by 2.4	cm. If the diameter	of the w	vire is doubled, then the	ne extens	sion in its length will	be				
	(a)	7.6 cm	(b)	4.8 cm	(c)	1.2 cm	(d)	0.6 cm			
42.	A force	e of $6 \times 10^6 \text{ Nm}^{-2} \text{ r}$	required	for breaking a mater	ial. The	density ρ of the mate	erial is 3	$\times 10^3$ kg m ⁻³ . If the			
	wire is	to break under its o	own wei	ght, then the length o	of the wi	re made of that mate	rial shou	Id be (Given, $g = 10$			
	ms ⁻²)										
	(a)	20 m	(b)	200 m	(c)	100 m	(d)	2000 m			
43.	The lea	ngth of the wire is i	ncrease	d by 2% by applying	a load o	of 2.5 kg-wt. What is	the line	ar strain produced in			
	the wir	re?									
	(a)	0.1	(b)	0.01	(c)	0.2	(d)	0.02			
44.	A wire	is suspended by or	ne end. A	At the other end, a we	eight equ	vivalent to 20 N force	e is appli	ed. If the increase in			
	length	is 1 mm, then increa	ase in th	e energy of the wire v	will be						
	(a)	0.01 J	(b)	0.02 J	(c)	0.04 J	(d)	1.00 J			
45.	Young	's modulus of the n	naterial	of a wire is Y. On pu	alling the	e wire by a force F, t	he incre	ase in its length is x.			
	The po	tential energy of the	e stretch	ed wire is							
	(a)	$\frac{1}{2}$ Fx	(b)	$\frac{1}{2}$ Yx	(c)	$\frac{1}{2}Fx^2$	(d)	None of these			
46.	A 1 m	long steel wire of	cross-se	ctional area 1 mm ² is	extende	ed by 1 mm. If $Y = 2$	2×10^{11}	Nm^{-2} , then the work			
	done is	C				5		,			
	(a)	011	(b)	0.2.1	(a)	0.2.1	(d)	0.4.1			
	(a)	U.1 J	(0)	0.2 J	(0)	0.5 J	(u)	U.4 J			

47. Two wires of same material and same diameter have lengths in the ratio 2 : 5. They are stretched by same force. The ratio of work done in stretching them is
(a) 5:2
(b) 2:5
(c) 1:3
(d) 3:1

48. If in a wire of Young's modulus Y, longitudinal strain X is produced, then the value of potential energy stored in its unit volume will be

- (a) 0.5 YX^2 (b) $0.5 \text{ Y}^2 \text{X}$ (c) 2YX^2 (d) YX^2
- 49. A wire suspended vertically from one of its ends is stretched by attaching a weight of 200 N to the lower end. The weight stretched the wire by 1 mm. Then, the elastic energy in the wire is
 - (a) 0.2 J (b) 10 J (c) 20 J (d) 0.1 J
- 50. A rigid bar of mass M is suspended symmetrically by three wires each of length l. Those at each end are of copper and the middle one is of iron. What is the ratio of their diameters $\left(\frac{D_{copper}}{D_{iron}}\right)$ if each wire is to have the same tension?
 - (a) $\frac{Y_{copper}}{Y_{iron}}$ (b) $\sqrt{\frac{Y_{iron}}{Y_{copper}}}$ (c) $\frac{Y_{iron}^2}{Y_{copper}^2}$ (d) $\frac{Y_{iron}}{Y_{copper}}$

Date: 13.11.2022

ABHIMANYU BATCH CHEMISTRY : REVISION TEST 2 (SET A) Topics: Atomic Structure, Gaseous States and Chemical Equilibrium

51.	Maxin	num number of elect	trons pre	esent in N shell is				
	(a)	18	(b)	32	(c)	2	(d)	8
52.	Neon ((Z = 10) consists of						
	(a)	9 Electrons	(b)	12 Electrons	(c)	5 Electrons	(d)	10 Electrons
53.	In pota	assium the order of e	energy le	evel is				
	(a)	3s, 3d	(b)	3p, 4s	(c)	4s, 4p	(d)	4s, 3d
54.	The H	eisenberg uncertaint	y princij	ple can be applied to				
	(a)	Protons only			(b)	Electrons only		
	(c)	Neutrons only			(d)	All material objects	in motio	on
55.	Electro	onic configuration o	f H− is					
	(a)	$1s^0$	(b)	$1s^1$	(c)	1s ²	(d)	$1s^{1}, 2s^{1}$
56.	The co	prrect ground state el	lectronic	configuration of Cr a	atom is			
	(a)	$[Ar]3d^54s^1$	(b)	$3d^44s^2$	(c)	$3d^{6}4s^{0}$	(d)	$4d^55s^1$
57.	The el	ement with $Z = 20$ is	S					
	(a)	an alkali metal			(b)	an alkaline earth me	etal	
	(c)	a halogen			(d)	an inert gas		
58.	The nu	mber of electrons s	hared by	each atom of nitroge	n in nitr	ogen molecule is		
	(a)	2	(b)	6	(c)	3	(d)	4

विद्या दराति विनयम् Knowledge is Discipline	BJ	INP
--	----	-----

59.	The to	tal number of electro	ons pres	ent in 8 g of methane	is			
	(a)	4.02×10^{18}	(b)	3.01×10^{24}	(c)	3.01×10^{22}	(d)	$2.51 imes 10^{24}$
60.	One of	the basic assumption	ons of B	ohr's theory is				
	(a)	linear momentum	is quant	ized				
	(b)	angular momentu	n is qua	ntized				
	(c)	electrons do not fe	el nucle	ear attractions in station	onary orl	bits		
	(d)	stationary orbits h	ave no p	position momentum u	ncertain	ty		
61.	Bracke	ett series are produce	ed when	the electrons from th	e outer o	orbits jump to		
	(a)	2nd orbit	(b)	3rd orbit	(c)	4th orbit	(d)	5th orbit
62.	The m	aximum number of	atomic o	orbitals associated wit	th a prin	cipal quantum numbe	r 5 is	
	(a)	9	(b)	12	(c)	16	(d)	25
63.	Which	of the following sp	ecies is	isoelectronic with CC)?			
	(a)	HF	(b)	\mathbf{N}_2	(c)	N_2^+	(d)	O_2^-
64.	Few el	ectrons have follow	ing qua	ntum numbers,				
	(i)	n = 4, l = 1	(ii)	n = 4, l = 0	(iii)	n = 3, l = 2	(iv)	n = 3, l = 1
	Arrang	ge them in the order	of incre	asing energy from lov	west to h	ighest.		
	(a)	(iv) < (ii) < (iii) <	(i)		(b)	(ii) < (iv) < (i) < (iii	.)	
	(c)	(i) < (iii) < (ii) < (i	iv)		(d)	(iii) < (i) < (iv) < (ii	.)	
65.	Be ²⁺ is	isoelectronic with	which of	f the following ions?				
	(a)	H^{+}	(b)	Li ⁺	(c)	Na ⁺	(d)	Mg^{2+}
66.	Kineti	c energy of molecul	es is hig	hest in				
	(a)	Gases	(b)	Solids	(c)	Liquids	(d)	Solutions
				Space for Rou	ıgh Wor	<u>·k</u>		

67.	What	is the dominant inte	rmolecu	lar force or bond that	must be	overcome in convert	ing liqui	d CH ₃ OH to gas?
	(a)	Dipole-dipole inte	eraction		(b)	Covalent bonds		
	(c)	London dispersion	n forces		(d)	Hydrogen bonding		
68.	Which	n of the following ex	hibits th	e weakest intermolec	ular forc	ces?		
	(a)	NH_3	(b)	HCl	(c)	Не	(d)	H ₂ O
69.	The te	emperature at which	Celsius	and Fahrenheit scales	give the	e same reading is		
	(a)	0° C	(b)	32° F	(c)	$-40^{\circ} \mathrm{C}$	(d)	40° C
70.	When	gases are heated from	$m 20^\circ$ to	o 40° C at constant pr	essure, t	heir volumes		
	(a)	increase by the sa	me magi	nitude	(b)	become double		
	(c)	increase in the rat	io of the	ir molecular masses	(d)	increase but to diffe	erent ext	ent
71.	Dalto	n's law of partial pro	essures w	vill not hold good for	which o	f the following?		
	(a)	$H_2 + O_2 + CO_2 \\$	(b)	$N_2 + HBr + Cl_2 \\$	(c)	$Cl_2 + NH_3 + HBr$	(d)	$NH_3 + O_2 + Cl_2 \\$
72.	Which	n of the following ga	as will ha	ave highest rate of dif	fusion?			
	(a)	\mathbf{NH}_3	(b)	\mathbf{N}_2	(c)	CO_2	(d)	O_2
73.	Graph	between P and V at	t constan	t temperature is				
	(a)	straight			(b)	curved increasing		
	(c)	straight line with	slope		(d)	parabolic curve dec	reasing	
74.	The co	orrect representation	of Char	les's law is given				
	(a)	$ \begin{array}{c} \uparrow\\ Vol\\ 0\\ T(K)\rightarrow \end{array} $	(b)	$ \begin{array}{c} \uparrow\\ Vol\\ 0\\ T(K) \rightarrow \end{array} $	(c)	\uparrow Vol 0 T (K) \rightarrow	(d)	\uparrow_{Vol}

75.	Which	of the following sh	nows exp	licitly the relationship	p betwee	n Boyle's law	and Charles's l	law?
	(a)	$\frac{P_1}{P_2} = \frac{T_1}{T_2}$	(b)	PV = K	(c)	$\frac{P_2}{P_1} = \frac{V_1}{V_2}$	(d)	$\frac{V_2}{V_1} = \frac{P_1}{P_2} \times \frac{T_2}{T_1}$
76.	If the a	bsolute temperatur	e of gas i	is doubled and the pre	essure is	reduced to one	-half, the volu	me of the gas will
	(a)	Remain unchange	ed		(b)	Be doubled		
	(c)	Increase four-fold	l		(d)	Be reduced to	• 1/4 th	
77.	There i	s 10 litre of a gas a	t STP. V	Which of the followin	g new co	onditions keep	the volume cor	nstant?
	(a)	273 K and 2 atm	pressure		(b)	273° C and 2	atm pressure	
	(c)	546° C and 0.5 at	m pressu	ire	(d)	0° C and 0.0	atm pressure	
78.	16 g ox the mix	xygen and 3 g of hy ature will be nearly	ydrogen a	are mixed and kept at	760 mm	n pressure and	0° C. The total	volume occupied by
	(a)	22.4 L	(b)	33.6 L	(c)	448 L	(d)	44800 mL
79.	At cons	stant temperature, f	for a give	en mass of an ideal ga	S			
	(a)	The ratio of press	ure and v	volume always remain	ns consta	int		
	(b)	Volume always re	emains co	onstant				
	(c)	Pressure always r	emains c	onstant				
	(d)	The product of pr	essure ar	nd volume always rem	nains cor	nstant		
80.	At cons	stant pressure, the	volume o	of fixed mass of an ide	eal gas is	directly propo	rtional toa	
	(a)	Absolute tempera	ture		(b)	Degree centig	grade	
	(c)	Degree Fahrenhei	t		(d)	None		
81.	Which	of the following ex	pression	at constant pressure	represen	ts Charle's law	·	
	(a)	$V \propto \frac{1}{T}$	(b)	$V \propto \frac{1}{T^2}$	(c)	$V \propto T$	(d)	$V \propto d$

82. 4.4 g of a gas at STP occupies a volume of 2.24 L, the gas can be (a) (b) CO NO_2 (d) CO_2 O_2 (c) 83. Real gases show deviations from ideal behaviour when (a) temperature is low and pressure is high (b) temperature is high and pressure is low both temperature and pressure are low (c) (d) both temperature and pressure are high Containers A and B have same gases. Pressure, volume and temperature of A are all twice as that B, then the 84. ratio of number of molecules A and B are (a) 1:2(b) (c) 1:4(d) 4:12:185. The rate at which a substance reacts, depends on its: (a) active mass (b) molecular mass (c) equivalent mass (d) total volume Equilibrium constant for the reaction, $2NO_{(g)} + Cl_{2(g)} \rightleftharpoons 2NOCl_{(g)}$, is correctly given by the expression: 86. $K = \frac{[NOCI]^2}{[NO]^2[Cl_2]}$ (b) $K = \frac{[2NOCI]}{[2NO][Cl_2]}$ (c) $K = \frac{[NO]^2 + [Cl_2]}{[NOCI]}$ (d) $K = \frac{[NO]^2[Cl_2]}{[NOCI]^2}$ (a) 87. The equilibrium constants of the reactions, $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$

and $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$

are K_1 and K_2 respectively. The relationship between K_1 and K_2 is:

(a) $K_1 = K_2$ (b) $K_2^2 = K_1$ (c) $K_1^2 = K_2$ (d) $K_2 = \sqrt{K_1}$

88. Consider the following equilibrium

 $SO_{2(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{K_1} SO_{3(g)}$; $2SO_{3(g)} \xrightarrow{K_2} 2SO_{2(g)} + O_{2(g)}$

What is the relation between K_1 and K_2 ?

(a)
$$K_1 = \frac{1}{K_2}$$
 (b) $K_1 = \frac{1}{\sqrt{K_2}}$ (c) $K_1 = K_2$ (d) $K_1 = \frac{1}{K_2^2}$

89. For a system, $A + 2B \rightleftharpoons C$, the equilibrium concentrations are [A] = 0.06, [B] = 0.12 and [C] = 0.216. The K_C for the relation is:

	(a)	125	(b)	415	(c)	4×10^{-3}	(d)	250
90.	A rever	sible reaction is one	e which					
	(a)	proceeds in one dir	rection		(b)	proceeds in both dire	ections	
	(c)	proceeds spontaneo	ously		(d)	all the statements ar	e wrong	
91.	An exa	mple of reversible r	eaction	is:				
	(a)	$Pb(NO_3)_2 + 2NaI =$	$= PbI_2 +$	2NaNO ₃	(b)	$AgNO_3 + HCl = Ag$	Cl + HN	O ₃
	(c)	$2Na + 2H_2O = 2Na$	aOH + H	I_2	(d)	$KNO_3 + NaCl = KC$	l + NaN	O ₃
92.	Which	one of the following	g is not a	a reversible reaction?				
	(a)	$2HI_{(g)} = H_{2(g)} + I_{2(g)}$)		(b)	$PCl_{5(g)} = PCl_{3(g)} + Cl_{3(g)}$	l _{2(g)}	
	(c)	$2KClO_{3(s)} = 2KCl_{(s)}$	$30 + 3O_{2(2)}$	g)	(d)	$CaCO_{3(s)} = CaO_{(s)} +$	CO _{2(g)}	
93.	Active	mass is defined as:						
	(a)	number of g equiva	alent per	unit volume	(b)	number of g mol per	r litre	
	(c)	amount of substand	ce in gra	m per unit volume	(d)	number of g mole in	100 litr	e
94.	8.50 g o	of NH ₃ is present in	250 mL	volume. Its active n	nass is :			
	(a)	$1.0 \ \mathrm{ML}^{-1}$	(b)	$0.5 \ {\rm ML}^{-1}$	(c)	1.5 ML^{-1}	(d)	$2.0 \ ML^{-1}$

- 95. A chemical reaction, $A \rightleftharpoons B$, is said to be in equilibrium when:
 - (a) rate of forward reaction is equal to rate of backward reaction
 - (b) conversion of A to B is only 50% complete
 - (c) complete conversion of A to B has taken place
 - (d) only 25% conversion of A to B has taken place
- 96. The reaction between barium chloride and sodium sulphate goes to completion because
 - (a) barium sulphate is almost insoluble (b) the solubility of barium chloride decreases
 - (c) lattice energy of barium sulphate is very high (d) the reaction is irreversible in nature
- 97. For the reaction, $A + 2B \rightleftharpoons C$, the expression for equilibrium constant is:

(a)
$$\frac{[A][B]^2}{[C]}$$
 (b) $\frac{[A][B]}{[C]}$ (c) $\frac{[C]}{[A][B]^2}$ (d) $\frac{[C]}{[2B][A]}$

98. Equilibrium constant for the reaction, $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$, is correctly given by the expression:

(a)
$$K_{C} = \frac{[H_{2}][I_{2}]}{[HI]}$$
 (b) $K_{C} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$ (c) $K_{C} = \frac{[HI]}{[H_{2}][I_{2}]}$ (d) $K_{C} = \frac{[2HI]}{[H_{2}][I_{2}]}$

99. For the system, $3A + 2B \rightleftharpoons C$ the expression for equilibrium constant is:

(a)
$$\frac{[A]^3[B]^2}{[C]}$$
 (b) $\frac{[C]}{[A]^2[B]^2}$ (c) $\frac{[A]^2[B]^3}{[C]}$ (d) $\frac{[C]}{[A][B]}$

- 100. For the reaction, $2NO_{2(g)} \rightleftharpoons 2NO_{(g)} + O_{2(g)}$, $K_C = 1.8 \times 10^{-6}$ at 185° C, the value of lK_C for the reaction, $NO_{(g)} \rightleftharpoons NO_{(g)} + 1/2O_{2(g)}$, at the same temperature is
 - (a) 1.34×10^{-3} (b) 1.8×10^{-6} (c) 0.9×10^{-3} (d) 1.8×10^{6}

Max Marks: 100

ABHIMANYU BATCH PHYSICS : REVISION TEST-2 (SET A) ANSWER KEY Topic: Wave Optics + Rotational Motion + Elasticity

1.	(d)	2.	(b)	3.	(b)	4.	(a)	5.	(b)
6.	(a)	7.	(a)	8.	(c)	9.	(c)	10.	(b)
11.	(d)	12.	(c)	13.	(a)	14.	(c)	15.	(b)
16.	(c)	17.	(b)	18.	(d)	19.	(d)	20.	(c)
21.	(a)	22.	(d)	23.	(b)	24.	(a)	25.	(b)
26.	(c)	27.	(b)	28.	(d)	29.	(c)	30.	(b)
31.	(c)	32.	(b)	33.	(d)	34.	(d)	35.	(b)
36.	(b)	37.	(a)	38.	(a)	39.	(b)	40.	(d)
41.	(d)	42.	(b)	43.	(d)	44.	(a)	45.	(a)
46.	(a)	47.	(b)	48.	(a)	49.	(d)	50.	(b)

CHEMISTRY : REVISION TEST-2 (SET A) ANSWER KEY Topics: Atomic Structure, Gaseous States and Chemical Equilibrium

51.	(b)	52.	(d)	53.	(d)	54.	(d)	55.	(b)
56.	(a)	57.	(b)	58.	(b)	59.	(d)	60.	(b)
61.	(c)	62.	(d)	63.	(b)	64.	(a)	65.	(b)
66.	(a)	67.	(d)	68.	(c)	69.	(c)	70.	(d)
71.	(c)	72.	(a)	73.	(d)	74.	(b)	75.	(d)
76.	(c)	77.	(b)	78.	(d)	79.	(d)	80.	(a)
81.	(c)	82.	(d)	83.	(a)	84.	(a)	85.	(a)
86.	(a)	87.	(c)	88.	(b)	89.	(d)	90.	(b)
91.	(d)	92.	(c)	93.	(b)	94.	(d)	95.	(a)
96.	(d)	97.	(c)	98.	(b)	99.	(b)	100.	(a)